From: NBCNews
Are viruses DNA wrapped in a protein coat alive? The latest research says yes.
Researchers have debated whether viruses, which have genes but no cellular structure, should be considered forms of life. A new study suggests they should, showing that giant viruses have some of the most ancient protein structures found in all organisms on the planet.
Giant viruses should be included reconstructions of the tree of life, researchers report in a new study. The mimivirus, shown here (small black hexagons) infecting an amoeba, is as big as some bacterial cells and shares some ancient protein structures with most organisms.
The researchers conducted a census of all the protein folds occurring in more than 1,000 organisms in the three traditional branches on the tree of life bacteria, microbes known as archaea and eukaryotes. Giant viruses, which are considered “giant” based on the size of their genomes, also were included in the study because they are large and complex, with genomes rivaling some bacteria, University of Illinois researcher Gustavo Caetano-Anolls said in a statement.
For instance, the oceans largest virus, a giant virus called CroV, has genes that let it repair its genome, make sugars and gain more control over the very machinery the virus hijacks in host cells to replicate itself. (Since viruses are essentially DNA wrapped in a protein coat, they need the goods of a host to replicate themselves.)
Caetano-Anolls said his team looked at protein folds instead of genetic sequences because these structural features are like molecular fossils that are more stable over time. They assumed the folds that appear more often and in more groups are the most ancient structures.
“Just like paleontologists, we look at the parts of the system and how they change over time,” Caetano-Anolls said.
They found that many of the most ancient protein folds in living organisms were present in the giant viruses, which “offers more evidence that viruses are embedded in the fabric of life,” Caetano-Anolls said. The tree his team created had four clear branches, each representing a distinct “supergroup” bacteria, archaea, eukaryotes and giant viruses.
The researchers said the study, which was published in the journal BMC Evolutionary Biology, also bolsters claims that giant viruses were once much more complex than they are now. A dramatic decline in their genomes over time likely reduced them to their current parasitic lifestyle, Caetano-Anolls said.
Article from: msnbc.msn.com
Related posts:
Views: 0